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Modeling of locally self-similar processes using multifractional
Brownian motion of Riemann-Liouville type
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Fractional Brownian motion~FBM! is widely used in the modeling of phenomena with power spectral
density of power-law type. However, FBM has its limitation since it can only describe phenomena with
monofractal structure or a uniform degree of irregularity characterized by the constant Holder exponent. For
more realistic modeling, it is necessary to take into consideration the local variation of irregularity, with the
Holder exponent allowed to vary with time~or space!. One way to achieve such a generalization is to extend
the standard FBM to multifractional Brownian motion~MBM ! indexed by a Holder exponent that is a function
of time. This paper proposes an alternative generalization to MBM based on the FBM defined by the Riemann-
Liouville type of fractional integral. The local properties of the Riemann-Liouville MBM~RLMBM ! are
studied and they are found to be similar to that of the standard MBM. A numerical scheme to simulate the
locally self-similar sample paths of the RLMBM for various types of time-varying Holder exponents is given.
The local scaling exponents are estimated based on the local growth of the variance and the wavelet scalogram
methods. Finally, an example of the possible applications of RLMBM in the modeling of multifractal time
series is illustrated.
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I. INTRODUCTION

There exist many phenomena that have general
power-law spectral densities of the form 1/f a,1,a,3. Ex-
amples include fluctuations in physical systems such as
anomalous diffusion, fluctuations of stock markets, biolo
cal and medical time series, bit rate of transfers in the in
net traffics, etc.@1,2#. Such a property is usually associat
with the long-range dependence of the processes involve
to the fractal nature of the sample paths. For these reas
fractional Brownian motion~FBM! indexed by a constan
Holder exponent~or Hurst index!, H, is popular in the mod-
eling and simulation of such phenomena.

Two main properties of FBM that guarantee the gene
ized power-law spectrum over many decades of freque
are the global self-similarity and the stationarity of the inc
ment processes. Despite the success of FBM in the mode
of fractal phenomena characterized by single fractal dim
sion,D ~or a constant Holder exponentH), it has been found
to be too restrictive for many real situations that exhibit lo
self-similarity on a finite interval, whereby the local Hold
exponent is time~or space! -dependent. To suit such an a
plication, multifractional Brownian motion with the time
varying Holder function,H(t), on a real line has been sug
gested@3,4#. Nevertheless, two equivalent representations
MBMs are based on the standard FBM introduced in@5# and
@6#, respectively, which include the memory from the dista
past. Since the increment processes of the standard MBM
no longer stationary@a property that gives the main adva
tage to the standard FBM over the Riemann-Liouville type
fractional Brownian motion~RLFBM!#, it would be interest-
ing to consider whether an alternative MBM based on
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extension of RLFBM can be considered in the same way
the standard MBM as far as applications are concerned
fact, it has been shown in@7# that the large-time asymptoti
RLFBM is a locally self-similar process.

In this paper, we study the multifractional Brownian m
tion based on the generalization of RLFBM as an example
a locally self-similar process that begins at the origin w
the time-varying Holder exponent. We show that the lo
properties of the increment processes behave similarly to
standard MBM on the positive half of the real line. A simp
numerical scheme to simulate locally self-similar sam
paths for various time-varying Holder exponents is give
The local scaling exponents are estimated based on the
growth of variance and the wavelet scalogram methods.
nally, we suggest an application of the RLMBM for the mo
eling of multifractal financial time series.

II. SOME PROPERTIES OF MULTIFRACTIONAL
BROWNIAN MOTION

The standard definition of fractional Brownian motio
which is widely accepted, is the version introduced by Ma
delbrot and van Ness@5#:

BH~ t !5
1

G~H1 1
2 !

H E
2`

0

@~ t2s!H21/22~2s!H21/2#dB~s!

1E
0

t

~ t2s!H21/2dB~s!J , ~1!

where the Holder exponent is restricted in the interval
,H,1. The standard FBM given in Eq.~1! is self-similar
and its increments are stationary. These are the two pro
ties that allow one to associate a generalized power-
spectrum to the process over a wide range of frequenc
The covariance of FBM has the following simple form:
©2001 The American Physical Society04-1
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E@BH~ t1!BH~ t2!#5
sH

2

2
~ ut1u2H1ut2u2H2ut12t2u2H!, ~2!

where

sH
2 5var„BH~1!…5

G~122H !cos~Hp!

Hp
. ~3!

There also exists another equivalent definition~up to a mul-
tiplicative constant! of FBM in the form of a harmonizable
representation,

BH~ t !5
1

2pE2`

1` eitl21

uluH11/2
dB~l!. ~4!

A direct generalization of FBM to MBM can be carried o
by replacing the Holder exponentH by a time-varying func-
tion, H(t), satisfyingH:@0,̀ )→(0,1). Throughout this pa
per, we shall assume that the Holder exponent is a cont
ous and smooth deterministic function of time, implying th
H(t1t)'H(t) for t→0.

So far, there exist at least two versions of standard MB
@3,4# as a result of such generalizations on the definition
Eqs.~1! and~4!, respectively. A proof of equivalence~up to
a multiplicative deterministic function of time! between the
different representations of MBMs can be found in@8,9#. For
the scope of this study, we shall refer only to the definition
MBM given in @3#, namely

X~ t !5
1

G„H~ t !1 1
2 …

H E
2`

0

@~ t2s!H(t)21/22~2s!H(t)21/2#

3dB~s!1E
0

t

~ t2s!H(t)21/2dB~s!J . ~5!

Since the stochastic process defined in Eq.~5! has lost the
stationary property of the increments, its self-similarity b
havior is only valid locally within the interval of stationarit
and the self-similarity property has to be replaced by
locally asymptotic self-similarity to be defined below.

A MBM, X(t), indexed by the Holder exponentH(t)
PCb

„R,(0,1)… for tPR and someb.sup„H(t)… is said to be
locally asymptotically self-similar~LASS! at pointto if @4,8#

lim
r→01

S X~ to1ru!2X~ to!

rH(to) D
uPR

[@BH(to)~u!#uPR , ~6!

where the equality is up to a multiplicative determinis
function of time andBH(to) is the FBM indexed byH(to).

With the assumption thatH(t) is a b-Holder function such
that 0, inf„H(t)…<sup„H(t)…,min(1b), one may approxi-
mateH(t1ru)'H(t) asr→0.

For simplicity, we shall consider the normalized MBM
Y(t)5X(t)/AsH(t), where

sH(t)5
G„222H~ t !…cos@H~ t !p#

H~ t !p@2H~ t !21#
. ~7!
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Therefore, the local covariance of the standard MBM
given by

E@Y~ t1t!Y~ t !#

5
1

2
~ ut1tu2H(t)1utu2H(t)2utu2H(t)!, t→0,

~8!

where one assumesH(t) is sufficiently smooth such tha
H(t1t)'H(t) ast→0. The variance of the increment pro
cess becomes

E@ uY~ t1t!2Y~ t !u2#5utu2H(t), t→0, ~9!

which is applicable for all timet.
One may remark that the local stationary behavior giv

by Eq.~9! is applicable fort on the real line, and the standar
MBM @3,4# can be used for the modeling of locally sel
similar processes with memories from the distant past.
the other hand, for processes that begin at the origin
evolve with the time-varying Holder exponent defined ont
.0, the standard MBM may not be an appropriate model
the next section, we shall introduce the one-sided MB
based on the generalization of the fractional Brownian m
tion of Riemann-Liouville type@9#.

III. ONE-SIDED MBM BASED ON THE
RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL

The fractional Brownian motion based on the Rieman
Liouville fractional integral~RLFBM! is defined as@10#

BH~ t !15
1

G~H1 1
2 !
E

0

t

~ t2s!H21/2dB~s!, t>0, ~10!

which holds forH.0; it can also be extended to the ran
21/2,H<0 as a generalized stochastic process. Des
having a simple form as compared to the standard FBM,
increments of this process are not stationary. As a result,
cannot associate it with a generalized spectral density
power-law type. This is the main reason why the RLFBM
seldom used in modeling physical systems exhibiting pow
law spectral densities.

Since the standard MBM also does not have the glob
stationary increment process, it is interesting to study
properties that MBM derived from the RLFBM in order t
see whether both types of MBM have similar local prop
ties. We consider the RLMBM as the generalization of E
~10! defined as

X1~ t !5
1

G„H~ t !1 1
2 …
E

0

t

~ t2s!H(t)21/2dB~s!. ~11!

The covariance of this Gaussian process for 0,t1,t2 is cal-
culated to be
4-2
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E@X1~ t1!X1~ t2!#

5
2t1

H(t1)11/2t2
H(t2)21/2

@2H~ t1!11#G„H~ t1!1 1
2 …G„H~ t2!1 1

2 …

3 2F1S 1

2
2H~ t2!,1,H~ t1!1

3

2
,
t1

t2
D . ~12!

Note that the variance takes the form;t2H(t) and further-
more it can be shown that the increments of the RLMB
share many similar behaviors to that of the standard MB
@9#. One can show that fort1 /t!1 andt2 /t!1 such that
ut12t2u→0,

E@$X1~ t1t1!2X1~ t !%$X1~ t1t2!2X~ t !%#

;
1

2
~ ut1u2H(t)1ut2u2H(t)2ut12t2u2H(t)!. ~13!

For t15t25t,

E@ uX1~ t1t!2X1~ t !u2#;utu2H(t), t/t!1. ~14!

Thus, we have heuristically arrived at the locally asympto
self-similarity property of the RLMBM and the interval o
LASS improves as one gets far from the origin. Such a c
dition may be useful for modeling fractal anomalous diff
sion phenomena@11#. In order to explore possible applica
tions of modeling one-sided locally self-similar phenome
it is necessary to have an accurate and efficient generato
the RLMBM.

IV. ON THE SIMULATION OF RLMBM

In this section, we describe a direct scheme to genera
discrete sequence ofN points RLMBM, X1(t j ), with time
sequenceH(t j ) where 0< j <N and t5@0,1#PR1. We con-
sider sampling the points from a set ofN-sample paths of
RLFBM generated for the respective pointwise values
H(t j ) evaluated att j5 j /(N21). Since the RLFBM genera
tor is the basis of our scheme, a brief recall of one of
possible numerical simulations@12# is described below.

Consider the approximation of Eq.~10! for discrete time
t j5 j Dt, j PZ1 and time stepDt51/(N21) as follows:

BH~ t j !15
1

G~H1 1
2 !

(
i 51

j E
( i 21)Dt

iDt

~ t j2t!H21/2dB~t!. ~15!

Note thatdB(t) is the increment of Brownian motion, thu
one can approximate

dB~t!5S j i

ADt
D dt, ~16!

where j i is the discrete sequence of Gaussian white no
with zero mean and unit variance. Upon integration Eq.~15!
gives
04610
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BH~ t j !15(
i 51

j S j i

ADt
D wj 2 i 11Dt, ~17!

where the weighting function

wi5
1

G~H1 1
2 !

F t i
H11/22~ t i2Dt !H11/2

~H11/2!Dt G . ~18!

We shall use an improved form of the weighting function
suggested in@12#, namely

ŵi5
1

G~H11/2!
F t i

2H2~ t i2Dt !2H

2HDt G1/2

, ~19!

which gives a more accurate scaling of the variance,
var@BH(t j )#;t j

2H . Equations~17! and~19! form the genera-
tor of the discrete points of RLMBM simulation through th
sampling procedure

X1~ t j !5BH(t j )
~ t j !1 , 0< j <N. ~20!

Using the generator described above, we simulated
sample paths of RLMBM for the following time-varying
Holder exponents:

H1~ t !5H 0.4 for 0<t<0.4

0.65 for 0.4,t<1,
~21!

H2~ t !5at1b, ~22!

H3~ t !5ae2bt21c, a,b,cPR, ~23!

wherea,b,c are chosen arbitrarily for the sake of illustratio
and the sample paths are shown in Figs. 1~a!–1~c!, respec-
tively. All the variables considered here are dimensionle
Meanwhile, for applications of RLMBM in the modeling o
locally self-similar processes, one usually has to estimate
time-varying Holder exponent from a single time series
the event with finite length. It is therefore crucial to have
accurate estimator that shows optimal compromises betw
the low variance in the estimated values and less bias on
choice of the estimator’s window function.

V. ESTIMATION OF TIME-VARYING HOLDER
EXPONENTS

There are a number of well-known methods for an ac
rate estimation of the constant Holder exponent of a mon
ractal time series. Among these, the rescaled range orR/S
method and the Fourier power spectrum method are the m
widely used on practical time series@13# and are usually
implemented without anya priori assumption on the scalin
behaviors that may exist in the time series. Since these m
ods are based on a linear log-log plot that results in a sin
value for the scaling exponent, they are not appropriate
the estimation of locally time-varying Holder exponents.

In order to have an unbiased estimator with low varian
4-3
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one has to consider an interval of local stationarityutu,e,
such thatH(t) is kept constant, i.e.,H(t)'Ht for tP@ t
2e/2,t1e/2#. For an accurate estimation ofH(t) throughout
the sample path, one needs to vary the intervale with respect
to the local regularity ofH(t). However, for simplicity, we
have fixed the interval of stationary to be sufficiently sm
so as to provide a sufficient number of pointsk for a stable
estimator. Based on the local growth of the increment p
cesses, one may write a sequence@3#

Sk~ j !5
m

N21 (
i 5 j 2k/2

j 1k/2

uXHt
~ i 11!2XHt

~ i !u, 1,k,N,

~24!

wherem is the largest integer not exceedingN/k. The local
Holder exponentH(t) at pointt5 j /(N21) is then given by

H j /(N21)52
ln@Ap/2Sk~ j !#

ln~m21!
. ~25!

The denominator in Eq.~25! has been modified to give
better estimate with respect to the small sample size with
length of the neighborhood,k. Here, we arbitrarily fixk58
for all the computations bearing in mind that smaller valu
of k give better accuracies but larger fluctuations, and v
versa. The result of the estimation averaged over 10 sam
paths for each function ofH(t) is given in Figs. 2~a!–2~c!.

We may also consider the time-scale approach to the
timation of the local scaling exponent using the continuo
wavelet transform defined as

TX~ t,a!5
1

Auau
E

2`

1`

X~s!c* S t2s

a Dds, ~26!

FIG. 1. The graphs of RLMBM with time-varying Holder ex

ponent ~a! H1(t), ~b! H2(t)50.6t10.3, and~c! H3(t)50.5e28t2

10.35.
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wherec(t) is an admissible wavelet with a large number
vanishing moments anda is the scaling parameter. In thi
paper, we shall use the Morlet wavelet. Since the RLMB
shows quite similar local properties to the standard MB
many of the results obtained in@14,15# can be extended to
the present situation. First, consider the local scaling of
increment processes of RLMBM att5t8 as

E@ uX~ t81t!2X~ t8!u2#;utu2Ht,

t8P@ t2e/2,t1e/2#, 0,utu,e!1. ~27!

Then by using the vanishing moment condition of the wa
lets, we can write the wavelet coefficients as

TX~ t,a!5
1

Auau
E @X~ t81t!2X~ t8!#c* S t2~ t2t8!

a Ddt,

~28!

thereby giving the scalogram with the following scalin
form:

VX~ t,a!5E@ uTX~ t,a!u2#5a2H(t)11Cc~ t ! and

a'O~t!→0, ~29!

whereCc(t) is a function that depends on the correlation
two wavelets with overlapping supports. It follows that th
local Holder exponent is given by@15#

FIG. 2. The estimated time-varying Holder exponents for~a!
H1(t), ~b! H2(t), and ~c! H3(t) compared to the respective inpu
H(t) functions~thin curves!; intermediate curves, variance metho
thick curves, scalogram method.
4-4
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H~ t !5

k

2E aVX~ t,a!e2kada

E VX~ t,a!e2kada

21, ~30!

with the smoothing functione2ka, k.0. The value fork is
chosen such that the local behavior~29! is feasible within the
domain of the integration. For simplicity, we have arbitrar
fixed k58, which in turn fixed the interval of local self
similarity in the same manner as the local growth of t
increments method. One may remark that smaller valuesk
ensure that the support of the analyzing wavelet is well c
tained within the domain of the integration but produce la
fluctuation in the estimation. Incorporating Eqs.~27! into Eq.
~28! allows one to estimate the time-varying Holder exp
nent as given by Eq.~30! for the sample paths generate
above and the results are compared to the variance-b
method in Figs. 2~a!–2~c!.

One may notice the poor performance of the wave
scalogram method, which is mainly due to the finite reso
tion of the sample path, and furthermore we have fixed
number of octaves in the scalogram estimation through
the graphs. A better estimate would be to consider an ad
tive window with variable window sizes. We recall here t
similar observation made in@3# that the variance metho
performs better compared to other schemes such as the
tral or the wavelet-based estimations. Therefore, we ad
the time-varying H(t) estimator based on the varianc
method to suggest one possible application of RLMBM
the modeling of financial time series.

VI. MULTIFRACTIONAL MODELING OF FINANCIAL
TIME SERIES

FBM has been useful as a model in accordance with
fractal market hypothesis to explain the scaling behav
and the long-range dependences in financial time series@16#.
One can associate the values 0,H,1/2 to the antipersisten
behaviors in the time series, where any positive incremen
the past will be followed by a negative increment in t
future and vice versa. Meanwhile, the range 1/2,H,1 cor-

FIG. 3. The graph of the daily lowest of U.S. Dow Jones Ind
trial Average Stock Index.
04610
f
-

e

-

ed

t
-
e
ut
p-

ec-
pt

e
s

in

responds to persistent characteristics in the time series,
any positive increment in the past will persist in the futu
and likewise for negative increments. Such a description
been found to be useful in the predictability and analysis
trends in financial and meteorological time series. On
other hand, the Holder exponentH can also be used to de
scribe the fractal characteristic of the sample paths where
global fractal dimensionDH of the graph is given byDH
522H.

In this paper, we examine the local scaling properties
the U.S. Dow Jones Industrial Average Stock Index for
duration of 3 January 1995 until 31 May 2000 and here
study the time series for the daily lowest index as shown
Fig. 3 ~the graph has been shifted to begin at the origin a
to be normalized!. A practical monofractal method widely
used in the estimation of the Holder exponent is the resca
rangeR/S method. The rescaled range is calculated by fi
rescaling the data,Xr , by subtracting the sample mean,X̂,

Zr5~Xr2X̂!, r 51, . . . ,n, ~31!

wheren is the number of points in the range. DenotingY as
the cumulative time series, the adjusted range is then defi
as

Rn5max$Y1 , . . . ,Yn%2min$Y1 , . . . ,Yn%. ~32!

Upon dividing Eq. ~32! by the standard deviation,Sn

5n21/2A(Xr2X̂)2, one obtains the rescaled-range relatio
ship

~R/S!n5CnH, ~33!

whereC is a constant. The slope of the log-log plot of E
~33! gives the empirical Holder exponent of the time seri
The result of theR/S analysis on the Dow Jones time seri
is shown in Fig. 4, where the linear least-squares fitting gi
H50.6060.03. TheR/S method gives an average value f
the Holder exponent of the time series and it has been us
for the fractal analysis of time series that exhibits monofr
tal behavior. In the case of financial time series shown in F

-
FIG. 4. Log-log plot of theR/S analysis of the financial time

series.
4-5
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3, it is obvious that the regularity of the sample path is n
uniform throughout the graph and a monofractal descript
is rather inadequate.

Detailed analysis of financial time series has provided
evidence of multifractality@17,18# whereby there exists a
finite set of Holder exponents in the time series. The us
notion of multifractality is based on the scaling behavior
structure functions:

Sp~t!5E$@X~ t1t!2X~ t !#p%;tjp, pPZ1, ~34!

wherejp is a nonlinear function@19,20#. We remark that by
considering S2(t,t)5E@ uX(t1t)2X(t)u2#;t2H(t), t→0,
our approach provides an alternative description of tim
dependent multifractal behavior for Gaussian time se
characterized by the time-varying Holder exponentH(t).

Based on the estimator given in Eqs.~24! and ~25!, we
determine the empirical time-varying Holder exponents
the time series shown in Fig. 3. The results of least-squ
fitting using a first-order polynomial, H(t)50.003t
10.527 (x2 error57.67), and a fourth-order polynomia
H8 (t) 5 ( 24.5723 10213) t4 1 (1.3013 1029) t3 2 (1.037
31026)t210.0005t10.549 (x2 error56.90), are shown in
Fig. 5. Even though the nonlinear fitting gives a better
scription of the local variation of Holder exponents, one h
to allow for the inaccuracy of the estimator with a fini
window length that causes the fluctuation in the estimati
For purposes of illustration, we may just consider the lin
approximation for the increasing trend, and it is found th
the daily lowest of the U.S. Dow Jones Industrial Avera
Stock Index exhibits local self-similarity with time-varyin
Holder exponents that fall approximately within 0.4 and 0
This observation conforms to the multifractal properties
financial time series by exhibiting that there exists a finite
of pointwise Holder singularity exponents. A monofrac
estimation method such as theR/S analysis will only give
the global average value of the Holder exponent based on
assumption that the time series has a uniform degree o
regularity, while the standard multifractal singularity spe

FIG. 5. The pointwise Holder exponent of the financial tim
series estimated using the variance method fitted with a linearH(t)
function ~thin curve!; thick curve, a fourth-order polynomialH8(t).
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trum describes the probablity distribution of the Holder e
ponents occurring in the time series. Both methods, howe
do not give information on the time-dependent local se
similarity feature.

On the robustness of the estimation, one may remark
the large fluctuations in the pointwise values ofH(t) are
mainly due to finite resolution of the estimator’s windo
length used on a single time series of the event. However,
globally increasing trend in the estimatedH(t) for the time
series depicted the time-varying multifractal behavio
which can be modeled by locally self-similar processes s
as the RLMBM introduced in this study.

VII. CONCLUSIONS

We have described the local self-similarity properties
RLMBM, which is shown to share many similar character
tics of the standard MBM especially in correspondence w
the increments of the two processes. Since the stationarit
the increment processes is longer than the cornerstone o
standard MBM, one now has a choice of model for the stu
of locally self-similar processes based on the amount
memory to be integrated into the system. For processes
begin at the origin, we suggest that the RLMBM may be
suitable model compared to the standard MBM. We ha
also demonstrated a direct and simple scheme for the
erator of RLMBM based on a method of sampling using a
of N-sample paths of RLFBM generated for the respect
pointwise values ofH(t j ) evaluated att j5 j /(N21). The
time-varying Holder exponents estimated using the lo
variance method have been found to be more accurate c
pared to the scalogram method~see, for example,@3#! and
this can also be related to the disadvantage of fixing
sampling window length in the latter@14# and on the sensi-
tivity of the choice of mother wavelet. However, we belie
that both methods should improve with adaptive sampl
window length techniques.

Finally, we illustrated one possible application
RLMBM in the modeling of time-varying multifractality in
financial time series. In contrast to the standard multifrac
technique, which focuses on the probability distribution
the singularity spectrum, the method mentioned here gi
an alternative description of the pointwise multifractal b
havior of inhomogeneous time series or locally self-simi
processes. It is found that to the first-order approximati
the daily lowest of the U.S. Dow Jones Industrial Avera
Stock Index exhibits local self-similarity with time-varyin
Holder exponents that increase from roughlyH;0.5 to H
;0.9 during the period of 3 January 1995 until 31 Ma
2000. A monofractal estimator such as theR/S analysis
would only give the global average value of the Holder e
ponent (H.0.6), thus implying a single trend of long-rang
dependence throughout the time series. Our results are
consistent with the multifractal properties of financial tim
series by showing that there exists a finite set of pointw
Holder singularity exponents. Other possible applications
clude the modeling of queing processes and ethernet tr
flows @21,22#, which are currently under investigation.
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