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Fractional Brownian motior{fFBM) is widely used in the modeling of phenomena with power spectral
density of power-law type. However, FBM has its limitation since it can only describe phenomena with
monofractal structure or a uniform degree of irregularity characterized by the constant Holder exponent. For
more realistic modeling, it is necessary to take into consideration the local variation of irregularity, with the
Holder exponent allowed to vary with timer spaceé One way to achieve such a generalization is to extend
the standard FBM to multifractional Brownian moti@dBM ) indexed by a Holder exponent that is a function
of time. This paper proposes an alternative generalization to MBM based on the FBM defined by the Riemann-
Liouville type of fractional integral. The local properties of the Riemann-Liouville MBRLMBM) are
studied and they are found to be similar to that of the standard MBM. A numerical scheme to simulate the
locally self-similar sample paths of the RLMBM for various types of time-varying Holder exponents is given.
The local scaling exponents are estimated based on the local growth of the variance and the wavelet scalogram
methods. Finally, an example of the possible applications of RLMBM in the modeling of multifractal time
series is illustrated.
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[. INTRODUCTION extension of RLFBM can be considered in the same way as
the standard MBM as far as applications are concerned. In
There exist many phenomena that have generalizethct, it has been shown Y] that the large-time asymptotic
power-law spectral densities of the formf1/l<a<3. Ex- RLFBM is a locally self-similar process.
amples include fluctuations in physical systems such as the In this paper, we study the multifractional Brownian mo-
anomalous diffusion, fluctuations of stock markets, biologi-tion based on the generalization of RLFBM as an example of
cal and medical time series, bit rate of transfers in the inter@ locally self-similar process that begins at the origin with
net traffics, etc[1,2]. Such a property is usually associated th€ time-varying Holder exponent. We show that the local
with the long-range dependence of the processes involved properties of the increment processes behave.3|m|larlly to the
to the fractal nature of the sample paths. For these reasor%t"’mdard MBM on the positive half of the real line. A simple

fractional Brownian motion(FBM) indexed by a constant numerical sc.heme.to simu'late locally self-similar. sample
Holder exponentor Hurst index, H, is popular in the mod- paths for various time-varying Hol(_jer exponents is given.
eling and simulation of such phenomena. The local sca!mg exponents are estimated based on the qual
. . growth of variance and the wavelet scalogram methods. Fi-
. Two main properties of FBM that guarantee the general'naIIy, we suggest an application of the RLMBM for the mod-
ized power-law spectrum over many dgcadgs of freguencgnng of multifractal financial time series.
are the global self-similarity and the stationarity of the incre-
ment processes. Despite the success of FBM in the modeling
of fractal phenomena characterized by single fractal dimen-
sion, D (or a constant Holder exponei?, it has been found
to be too restrictive for many real situations that exhibit local The standard definition of fractional Brownian motion,
self-similarity on a finite interval, whereby the local Holder Which is widely accepted, is the version introduced by Man-
exponent is timeor space -dependent. To suit such an ap- delbrot and van Ness]:

plication, multifractional Brownian motion with the time- o
U [(t—9)" 2= (—9)""¥?]dB(s)

Il. SOME PROPERTIES OF MULTIFRACTIONAL
BROWNIAN MOTION

varying Holder functionH(t), on a real line has been sug- By(t)= ;

gested 3,4]. Nevertheless, two equivalent representations of F'(H+3)

MBMs are based on the standard FBM introducefbihand

[6], respectively, which include the memory from the distant n ft(t_S)H—llzd B(s)}

past. Since the increment processes of the standard MBM are 0 '

no longer stationarya property that gives the main advan-

tage to the standard FBM over the Riemann-Liouville type ofwhere the Holder exponent is restricted in the interval 0O

fractional Brownian motiofRLFBM)], it would be interest- <H<1. The standard FBM given in Eql) is self-similar

ing to consider whether an alternative MBM based on theand its increments are stationary. These are the two proper-
ties that allow one to associate a generalized power-law
spectrum to the process over a wide range of frequencies.

*Corresponding author. The covariance of FBM has the following simple form:

()
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Uﬁ Therefore, the local covariance of the standard MBM is
E[BH(tl)BH(tz)]=7(|t1|2“+|tz|2“—Itl—tzI2H), (2)  given by

where E[Y(t+7)Y(1)]

1
I'(1—2H)cogH = _ 2H(t 2H(t) _ | |2H(t
(8)

There also exists another equivalent definitiap to a mul-

tiplicative constantof FBM in the form of a harmonizable where one assumed(t) is sufficiently smooth such that

representation, H(t+ 7)~H(t) asT—0. The variance of the increment pro-
' cess becomes
1 + o0 elt)\_ 1
Bu()=o—| ———=dB()). 4
H 27 ) . |)\|H+l/2 E[|Y(t+T)_Y(t)|2]:|T|2H(t)l 7—0, (9

A direTt geneLaIizatilon of FBM to MBM.can be parr;ed out \yhich is applicable for all timé.
by replacing the Holder exponehitby a time-varying func- One may remark that the local stationary behavior given

tion, H(t), satisfyingH:[0)—(0,1). Throughout this pa- g4 (9) is applicable fott on the real line, and the standard
per, we shall assume tha.t the HoIder exponent is a continyg g [3,4] can be used for the modeling of locally self-
ous and smooth deterministic function of time, implying that gy ijar processes with memories from the distant past. On

H(t+7)~H(t) for 7—0.

Egs.(1) and(4), respectively. A proof of equivalendep to the next section, we shall introduce the one-sided MBM

a multiplicative deterministic function of timebetween the based on the generalization of the fractional Brownian mo-
different representations of MBMs can be found &9|. For : : P
. . tion of Riemann-Liouville typd9].
the scope of this study, we shall refer only to the definition of
MBM given in [3], namely
I1l. ONE-SIDED MBM BASED ON THE
RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL

0
X(t) f_m[(t_S)H(t)_llz_(_S)H(t)_llz]

1
C(H(t)+3) The fractional Brownian motion based on the Riemann-

. Liouville fractional integral(RLFBM) is defined a$10]
de(s)+f (t—s)H“)—l/?dB(s)}. (5)
0

1
By(t)

W) =——
Since the stochastic process defined in &y.has lost the I(H+3)
stationary property of the increments, its self-similarity be-

havior is only valid locally within the interval of stationarity which holds forH>0; it can also be extended to the range

and the self-similarity property has to be replaced by the-1/2<H<0 as a generalized stochastic process. Despite

locally asymptotic self-similarity to be defined below. having a simple form as compared to the standard FBM, the

A MBM, X(t), indexed by the Holder exponeiki(t) increments of this process are not stationary. As a result, one

e CA(R,(0,1)) for t e R and some8>sup(H(t)) is said to be  cannot associate it with a generalized spectral density of
locally asymptotically self-similatLASS) at pointt, if [4,8]  power-law type. This is the main reason why the RLFBM is
seldom used in modeling physical systems exhibiting power-

ft(t—s)H—”?dB(s), t=0, (10)
0

) X(to+pu)—X(t,) law spectral densities.
lim Hto) =[Bu(ty(Wluer: (6) Since the standard MBM also does not have the globally
p—07" p ueR stationary increment process, it is interesting to study the

h h lity i ‘ ltivlicative deterministi properties that MBM derived from the RLFBM in order to
where the equalily I1s up fo a muiliplicative determinislic goq \yhether both types of MBM have similar local proper-

function of time andBy, is the FBM indexed byH(to).  ies We consider the RLMBM as the generalization of Eq.
With the assumption thatl(t) is a g-Holder function such (10) defined as

that 0<inf(H(t))<supH(t))<min(18), one may approxi-
mateH(t+ pu)~H(t) asp—0.

t
For simplicity, we shall consider the normalized MBM, Xi(t)= ———r f (t—s)HO-124B(s). (11
Y(t) =X(t)/ oy, where I'(H(t)+3)Jo
” _T'(2=2H(t))cogH(t) 7] @ The covariance of this Gaussian process fert@<t, is cal-
MO H(D [2H () — 1] culated to be
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E[X; (t1) X (t2)] j £
ZtT(t1)+1/2t?(t2)—1/2 BH(tj)+=Zl \/T Wi 1At 17)
[2H(ty) +1]T(H(t) + )T (H(ty) +3) where the weighting function
1 3t H+12_ ¢ H+1/2
X oFi| 5 —H(t) IH(t) + 5. ). (12 I L il Ul .
2 " T(H+1) (H+1/2)At

Note that the variance takes the formt*") and further- We shall use an improved form of the weighting function as
more it can be shown that the increments of the RLMBM P ghting

share many similar behaviors to that of the standard MBI\/ISUQ(~:]eSted 1h12], namely
[9]. One can show that for;/t<1 and r,/t<1 such that 1

—7,|—0, =
7= 7l Wi T HT 172

1/2

2H_ t _ At)2H
- (ti—AY | 19

2HAt

A + 1) —
BLX (T 70) =X (OHX (T 72) =X (D] which gives a more accurate scaling of the variance, i.e.,

1 val By(t;)]~t?" . Equationg17) and(19) form the genera-
2 2 2 J J
”§(|7'1| MO+ || 2O |7 — 7, 2O). (13 tor of the discrete points of RLMBM simulation through the
sampling procedure

For ri=m=1, ;
e X4 () =By (t)+, 0<j=N. (20

E[IX, (t+ 1) =X (D]~ [ 720, at<1. (14) . _ _
Using the generator described above, we simulated the

Thus, we have heuristically arrived at the locally asymptoticS@mPle paths of RLMBM for the following time-varying

self-similarity property of the RLMBM and the interval of Holder exponents:
LASS improves as one gets far from the origin. Such a con-
dition may be useful for modeling fractal anomalous diffu-
sion phenomen@ll]. In order to explore possible applica-
tions of modeling one-sided locally self-similar phenomena,

it is necessary to have an accurate and efficient generator for _
the RLMBM. H,(t)=at+b, (22)

0.4 for O<t<0.4
H.i()= (21)
0.65 for 0.4t<1,

2
IV. ON THE SIMULATION OF RLMBM Hy()=ae *"+c, abceR (23
In this section, we describe a direct scheme to generate \Wherea,b,c are chosen arbitrarily for the sake of illustration
discrete sequence o points RLMBM, X (t;), with time ~ and the sample paths are shown in Fig&)-1(c), respec-
sequence (t;) where O<j<N andt=[0,1]e R*. We con- tively. AI_I the var|ab_les_con5|dered here_z are dlmens_lonless.
sider Samp"ng the points from a set Nf.samp|e paths of Meanwhlle, for appllcatlons of RLMBM in the modellng of
RLFBM generated for the respective pointwise values oflocally self-similar processes, one usually has to estimate the

H(t;) evaluated at;=j/(N—1). Since the RLFBM genera- time-varying Holder exponent from a single time series of
tor is the basis of our scheme, a brief recall of one of |tSthe event with finite Iength It is therefore crucial to have an

possible numerical simulatiori42] is described below. accurate estimator that shows optimal compromises between
Consider the approximation of E¢LO) for discrete time the low variance in the estimated values and less bias on the
t;=jAt, j eZ" and time step\t=1/(N—1) as follows: choice of the estimator’'s window function.
! iAt V. ESTIMATION OF TIME-VARYING HOLDER
Bu(t)  =—— >, f (t—nH " YdB(7). (15 EXPONENTS
F(H+§) i=1 J(i—1)At

There are a number of well-known methods for an accu-
Note thatdB(7) is the increment of Brownian motion, thus rate estimation of the constant Holder exponent of a monof-
one can approximate ractal time series. Among these, the rescaled range/8r
method and the Fourier power spectrum method are the most
3 widely used on practical time seri¢43] and are usually
dB( 7-):(_') dr, (16) implemented without ang priori assumption on the scaling
VAt behaviors that may exist in the time series. Since these meth-
ods are based on a linear log-log plot that results in a single
where §; is the discrete sequence of Gaussian white noisgalue for the scaling exponent, they are not appropriate for
with zero mean and unit variance. Upon integration @&  the estimation of locally time-varying Holder exponents.
gives In order to have an unbiased estimator with low variance,
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FIG. 1. The graphs of RLMBM with time-varying Holder ex- ol . . . . . . . .
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FIG. 2. The estimated time-varying Holder exponents (@r
one has to consider an interval of local stationafity<<e, ~ Ha(t), (b) Hy(t), and(c) Hs(t) compared to the respective input
such thatH(t) is kept constant, i.e.H(t)~H, for te[t H_(t) functions(thin curve$; intermediate curves, variance method;
— /2t + €/2]. For an accurate estimation Hif(t) throughout ~ thick curves, scalogram method.
the sample path, one needs to vary the inteewalth respect
to the local regularity oH(t). However, for simplicity, we ~Wherey(t) is an admissible wavelet with a large number of
have fixed the interval of stationary to be sufficiently smallvanishing moments and is the scaling parameter. In this
so as to provide a sufficient number of poiktfor a stable ~Paper, we shall use the Morlet wavelet. Since the RLMBM
estimator. Based on the local growth of the increment proshows quite similar local properties to the standard MBM,

cesses, one may write a sequefigg many of the results obtained [14,15 can be extended to
the present situation. First, consider the local scaling of the
j+ki2 increment processes of RLMBM &att’ as
S)=g—7 2 Xu(+1)=Xp ()], 1<k<N,
N—1 i=j—k/i2 t t E[|X(t/+7‘)_X(t,)|2]~|7'|2H‘,

(24)
wherem is the largest integer not exceediNgk. The local telt-el2t+el2], 0<|rf/<e<l. (27)

Holder exponenH (t) at pointt=j/(N—1) is then given by ) o -
Then by using the vanishing moment condition of the wave-
In[ msk( D] lets, we can write the wavelet coefficients as

Hjn-1)=— - (25
In(m—1) . -
= xit - x| T o

The denominator in Eq(25) has been modified to give a a

better estimate with respect to the small sample size with the (28

length of the neighborhoodk. Here, we arbitrarily fixk==8

for all the computations bearing in mind that smaller valueshereby giving the scalogram with the following scaling

of k give better accuracies but larger fluctuations, and vicdorm:

versa. The result of the estimation averaged over 10 sample

paths for each function dfi(t) is given in Figs. 2a)-2(c). Oy(t,a)=E[| Tx(t,a)|2]=a2H®O+1Cy(t) and

We may also consider the time-scale approach to the es-

timation of the local scaling exponent using the continuous

wavelet transform defined as a~0(7)—0, (29)
whereC,(t) is a function that depends on the correlation of

ds, (26 two wavelets with overlapping supports. It follows that the
local Holder exponent is given Hy5]

1 [+e
Tx(t,a)=— MM$W

NEE

t—s

a
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FIG. 3. The graph of the daily lowest of U.S. Dow Jones Indus-

trial Average Stock Index. FIG. 4. Log-log plot of theR/S analysis of the financial time

series.
EJ aQy(t,a)e  ada responds to persistent characteristics in the time series, i.e.,
H(t) = 2 1 (30) any positive increment in the past will persist in the future

v and likewise for negative increments. Such a description has
f Qx(t,a)e” “da been found to be useful in the predictability and analysis of
trends in financial and meteorological time series. On the
with the smoothing functioe 2, k>0. The value fork is  other hand, the Holder exponeHtcan also be used to de-
chosen such that the local behavi2®) is feasible within the  scribe the fractal characteristic of the sample paths where the
domain of the integration. For simplicity, we have arbitrarily global fractal dimensiorD,, of the graph is given by
fixed k=8, which in turn fixed the interval of local self- =2—H.
similarity in the same manner as the local growth of the In this paper, we examine the local scaling properties of
increments method. One may remark that smaller valués of the U.S. Dow Jones Industrial Average Stock Index for the
ensure that the support of the analyzing wavelet is well conduration of 3 January 1995 until 31 May 2000 and here we
tained within the domain of the integration but produce largestudy the time series for the daily lowest index as shown in
fluctuation in the estimation. Incorporating E¢®7) into Eq.  Fig. 3 (the graph has been shifted to begin at the origin and
(28) allows one to estimate the time-varying Holder expo-to be normalized A practical monofractal method widely
nent as given by Eq30) for the sample paths generated used in the estimation of the Holder exponent is the rescaled-
above and the results are compared to the variance-baseahgeR/S method. The rescaled range is calculated by first

method in Figs. &)-2(c). rescaling the dataX, , by subtracting the sample mea,
One may notice the poor performance of the wavelet
scalogram method, which is mainly due to the finite resolu- Z,=(X,—X), r=1,...n, (31

tion of the sample path, and furthermore we have fixed the

number of octaves in the scalogram estimation throughouivheren is the number of points in the range. Denotivigis

the graphs. A better estimate would be to consider an adaphe cumulative time series, the adjusted range is then defined
tive window with variable window sizes. We recall here the as

similar observation made i3] that the variance method

performs better compared to other schemes such as the spec- Ro=maxYy, ....Yob—min{Yq, ... Y ). (32

tral or the wavelet-based estimations. Therefore, we adopt o o

the time-varying H(t) estimator based on the variance Upon dividing Eq. (32) by the standard deviationS,
method to suggest one possible application of RLMBM in=n"%2\/(X,—X)?, one obtains the rescaled-range relation-
the modeling of financial time series. ship

_ H
VI. MULTIFRACTIONAL MODELING OF FINANCIAL (R/§),=Cn", (33

TIME SERIES .
whereC is a constant. The slope of the log-log plot of Eq.

FBM has been useful as a model in accordance with th€33) gives the empirical Holder exponent of the time series.
fractal market hypothesis to explain the scaling behavior§he result of theR/S analysis on the Dow Jones time series
and the long-range dependences in financial time sgt&s is shown in Fig. 4, where the linear least-squares fitting gives
One can associate the values B <1/2 to the antipersistent H=0.60+0.03. TheR/S method gives an average value for
behaviors in the time series, where any positive increment ithe Holder exponent of the time series and it has been useful
the past will be followed by a negative increment in thefor the fractal analysis of time series that exhibits monofrac-
future and vice versa. Meanwhile, the range<1f2<1 cor-  tal behavior. In the case of financial time series shown in Fig.
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1.2 ' - ' ' ' - trum describes the probablity distribution of the Holder ex-
ponents occurring in the time series. Both methods, however,
do not give information on the time-dependent local self-
similarity feature.

On the robustness of the estimation, one may remark that
the large fluctuations in the pointwise values Hft) are
mainly due to finite resolution of the estimator’s window
length used on a single time series of the event. However, the
globally increasing trend in the estimatel(t) for the time
series depicted the time-varying multifractal behaviors,
02l | which can be modeled by locally self-similar processes such
as the RLMBM introduced in this study.

0.8

0.4

200 400 600 800 1000 1200
i VII. CONCLUSIONS

FIG. 5. The pointwise Holder exponent of the financial time  \ye have described the local self-similarity properties of
series estimated using the variance method fitted with a lid¢gyr RLMBM, which is shown to share many similar characteris-
function (thin curve; thick curve, a fourth-order polynomi&d’(t).  {ics of the standard MBM especially in correspondence with

o . . . the increments of the two processes. Since the stationarity of
3, it is obvious that the regularity of the sample path is NOtne jncrement processes is longer than the cornerstone of the
uniform throughout the graph and a monofractal descriptionsiandard MBM, one now has a choice of model for the study

is rather inadequate. o , _ of locally self-similar processes based on the amount of
Detailed analysis of financial time series has provided thénemory to be integrated into the system. For processes that

E:\v@dence of multifractality[17,1_8| Wher_eby the_re exists a begin at the origin, we suggest that the RLMBM may be a
finite set of Holder exponents in the time series. The usua}jitaple model compared to the standard MBM. We have
notion of multn_‘ractahty is based on the scaling behavior of 3155 demonstrated a direct and simple scheme for the gen-
structure functions: erator of RLMBM based on a method of sampling using a set
of N-sample paths of RLFBM generated for the respective
Sp(I=E{[X(t+7)—X(1)]P}~7%, peZ®, (349 pointwise values oH(t;) evaluated at;=j/(N—1). The
time-varying Holder exponents estimated using the local
whereé, is a nonlinear functioi19,20. We remark that by variance method have been found to be more accurate com-
considering S,(t,7)=E[|X(t+ 7)—X(t)|?]~7"Y, 7—0, pared to the scalogram methésee, for example[3]) and
our approach provides an alternative description of timethis can also be related to the disadvantage of fixing the
dependent multifractal behavior for Gaussian time seriesampling window length in the latt¢i4] and on the sensi-
characterized by the time-varying Holder exponklft). tivity of the choice of mother wavelet. However, we believe
Based on the estimator given in Eq24) and (25), we  that both methods should improve with adaptive sampling
determine the empirical time-varying Holder exponents forwindow length techniques.
the time series shown in Fig. 3. The results of least-squares Finally, we illustrated one possible application of
fitting using a first-order polynomial, H(t)=0.003 RLMBM in the modeling of time-varying multifractality in
+0.527 (y* error=7.67), and a fourth-order polynomial, financial time series. In contrast to the standard multifractal
H'(t) = (—4.572x 10 ¥ t* + (1.301x 10 °)t3— (1.037 technique, which focuses on the probability distribution of
X 10" ®)t?+0.0005+0.549 (x> error=6.90), are shown in the singularity spectrum, the method mentioned here gives
Fig. 5. Even though the nonlinear fitting gives a better de-an alternative description of the pointwise multifractal be-
scription of the local variation of Holder exponents, one hashavior of inhomogeneous time series or locally self-similar
to allow for the inaccuracy of the estimator with a finite processes. It is found that to the first-order approximation,
window length that causes the fluctuation in the estimationthe daily lowest of the U.S. Dow Jones Industrial Average
For purposes of illustration, we may just consider the lineaiStock Index exhibits local self-similarity with time-varying
approximation for the increasing trend, and it is found thatHolder exponents that increase from roughly-0.5 to H
the daily lowest of the U.S. Dow Jones Industrial Average~0.9 during the period of 3 January 1995 until 31 May
Stock Index exhibits local self-similarity with time-varying 2000. A monofractal estimator such as tRéS analysis
Holder exponents that fall approximately within 0.4 and 0.9.would only give the global average value of the Holder ex-
This observation conforms to the multifractal properties ofponent H=0.6), thus implying a single trend of long-range
financial time series by exhibiting that there exists a finite setdependence throughout the time series. Our results are also
of pointwise Holder singularity exponents. A monofractal consistent with the multifractal properties of financial time
estimation method such as ti®S analysis will only give series by showing that there exists a finite set of pointwise
the global average value of the Holder exponent based on thdolder singularity exponents. Other possible applications in-
assumption that the time series has a uniform degree of iclude the modeling of queing processes and ethernet traffic
regularity, while the standard multifractal singularity spec-flows [21,22), which are currently under investigation.
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